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Supervised Learning of the Next-Best-View for 3D Object Reconstruction
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ABSTRACT

Motivated by the advances in 3D sensing technology and the spreading of low-cost robotic platforms,
3D object reconstruction has become a common task in many areas. Nevertheless, the selection of
the optimal sensor pose that maximizes the reconstructed surface is a problem that remains open. It
is known in the literature as the next-best-view planning problem. In this paper, we propose a novel
next-best-view planning scheme based on supervised deep learning. The scheme contains an algorithm
for automatic generation of datasets and an original three-dimensional convolutional neural network
(3D-CNN) used to learn the next-best-view. Unlike previous work where the problem is addressed as a
search, the trained 3D-CNN directly predicts the sensor pose. We present an experimental comparison
of the proposed architecture against two alternative networks; we also compare it with state-of-the-art
next-best-view methods in the reconstruction of several unknown objects. Our method is faster and

reaches high coverage.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous three-dimensional (3D) object reconstruction
or inspection is a computer vision task with applications to
many areas, for example, robotics or cultural heritage conser-
vation. It consists of generating a 3D model from a physi-
cal object by sensing its surface from several points of views.
When the object is unknown, the task is performed iteratively
in four steps: sensor positioning, sensing, registration and plan-
ning of the next sensor location [18]. In this work, we are in-
terested in the challenging step of planning. According to the
literature, the addressed challenge is called the next-best-view
(NBV) problem and it has been defined as the task of computing
the sensor position and orientation that maximizes the object’s
surface [4].

So far, most of the state-of-the-art techniques for NBV plan-
ning have been manually designed depending on the represen-
tations, needs, and constraints of reconstruction scene. Some
methods, called synthesis methods, rely on analyzing the cur-
rent information about the surface and directly synthesize the
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NBV [3], [17]. Synthesis methods are fast but their perfor-
mance is usually decreased by objects with self-occlusions [18].
Another type of methods, called search-based, define a utility
function and then perform a search over the feasible sensor po-
sitions in order to optimize the utility function. For instance,
[24] and [2] represent the information with a probabilistic uni-
form grid, and they define as relevant features the frontier cells,
as a result, they perform a search of the sensor position and ori-
entation from where the maximum number of frontier cells is
observed. Recent utility functions are based on the information
gain contained in the model, [10]. In such cases, the target is
to find the sensor pose that observes the cells (voxels) whose
entropy is higher. Search-based methods are time-consuming
given that the utility function has to be evaluated multiple times.
Therefore, there is still a need for methods with the following
characteristics: i) effective in spite of the object’s shape and ii)
efficient in terms of computation time.

On the other hand, leveraged by technological advances in
parallel processing hardware, the machine learning technique
called deep learning (DL) [14] has dramatically improved the
state-of-the-art in several areas, such as optical character recog-
nition, two or three dimensional object recognition and classi-
fication [13]. One of the main advantages of DL is to automat-



ically discover the features that describe an entity or situation.

Our hypothesis is that the current NBV planning paradigm,
usually seen as an optimization problem [6], can be modeled as
a supervised learning problem. The trained function should take
as input the partially reconstructed model and it should output
the NBV. To the best of our knowledge, the use learning ap-
proaches, specifically DL, for NBV prediction is an unexplored
path. Even though new approaches are trying to learn the utility
function [7], the whole NBV prediction has not been addressed.

In this paper, we propose a supervised learning scheme
to predict the NBV. We provide a methodology for generat-
ing datasets and an original 3D convolutional neural network,
called NBV-Net. The scheme has been modeled as a classifi-
cation problem where to a given partial model a possible sen-
sor pose (class) is assigned. To validate the proposed scheme
we have i) generated a dataset with more than 15,000 exam-
ples, ii) trained the proposed network iii) compared its accuracy
against two related networks, iv) tested the trained network in
the reconstruction of several unknown objects and v) compared
its performance against several state-of-the-art methods. Our
experiments have shown that NBV-Net improves the accuracy
of related networks, and it has been capable of predicting the
NBY during the reconstruction of several unknown objects (do
not seen by the network during training) reaching a high re-
construction coverage. In addition, it is 1750 times faster with
respect to the tested methods.

2. Next-best-view learning problem

The NBV concept originally rose up in the context of 3D
object reconstruction [4]. In such a task, a sensor is placed at
several poses around the object of interest in order to get its 3D
shape. Due to the limited information about the object shape,
the reconstruction is done iteratively by the steps of positioning,
perception, registration and planning the NBV. Fig. 1 shows
four iterations of the reconstruction of an example object. Dur-
ing the positioning, the sensor is placed at a given pose. The
sensor’s pose (also named view) defines its position and orien-
tation, namely v = (x,y,2, @, (5, ¥)T, where « is a rotation about
X axis, B is a rotation about y axis and 7y is a rotation about z
axis. At the perception step, the object’s surface is measured
and a point cloud (z) from the shape is obtained. After the per-
ception, the acquired point cloud is registered to a single model
[1]. As the reconstruction advances, the gathered information
is stored into a partial model [9]. In this work, we use a uni-
form probabilistic occupancy grid, M, where each voxel has an
associated probability that represents the likelihood that part or
all the object’s surface is inside the voxel’s volume.

With respect to the NBV computation, so far, it has been
treated as a search problem, where the target is to find the view
that maximizes a metric. Unlike that approaches, in this work,
we aim to directly predict the NBV based on the information
provided by the partial model. Such prediction must be based
on knowledge obtained from previous reconstructions. Hence-
forth, we define the NBV learning problem as the task of learn-
ing a function
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Fig. 1. Example of a 3D reconstruction. For each iteration, the current
accumulated point cloud is displayed in black and the current sensor’s pose
is draw as a black arrow. Based on the current information, the NBV
(blue arrow) is computed. The perception made at the NBV is drawn in
blue. The overlap between the perception at the NBV and the accumulated
point cloud is drawn in red. Finally, the new perception is registered to the
accumulated point cloud. Note that in the next iteration the previous NBV
is now the current sensor’s pose. Figure best seen in color.

so that the perception at v = f(M) increases the information
contained in the partial model about the object. The input of f
is the voxel grid and it is written in eq. (1) as R” where # is the
amount of voxels in the grid. If we consider only the occupancy
probability then the domain of f is only [0, 1]7. The output is
directly a sensor pose where a perception should be taken.

The proposed data-driven approach decomposes the NBV
computation in two steps, the first step is the learning process
of f, which has to be carried out off-line and using a plenty
amount of examples from previous reconstructions; the second
step is the prediction where f is used to estimate the NBV. The
latter step is executed on-line during the reconstruction and it is
hoped to be as quick as possible. In general, learning f implies
to solve a regression problem and several challenges need to be
addressed, therefore our first approach is to face the problem as
a classification problem.

3. Dataset Generation

Deep learning approaches require vast amounts of examples
to reach successful performances. In this NBV learning ap-
proach, we require a dataset with examples composed by an in-
put (probabilistic grid) and a correct output (NBV). One of the
challenges is to provide the “correct” or “ground truth” NBV. It
is an important challenge because it implies to solve the NBYV,
which remains as an NP-Hard problem even though we could
have the complete information about the object. Therefore, in
this section, we propose a methodology to obtain a ground truth
NBYV using the complete information about the object and a dis-



Fig. 2. Coordinate frames. An / measured point with respect to the cam-
era’s frame is denoted by PiC = (x%,), z°), the same point referenced to the

global reference frame is denoted PiO =(x,¥,2).

crete search space. Making use of human expertise to label the
dataset has been discarded since there are inherent constraints
that even for a human expert are not easy to estimate, one of
them is the registration constraint which is needed to build a
unified model.

The proposed methodology works as follows. Given a demo
object (an object from which we known the whole surface), 1)
we establish a discrete NBV search space and then 2) we iter-
atively reconstruct it while we generate the NBVs. Below we
describe the discrete search space, then we provide the defini-
tion and computation of a ground truth NBV and finally, we
provide the iterative process for building the dataset.

3.1. Search Space Generation

In this step, for all demo objects a discrete set of views
(search space) is build. Such views will be the only available
poses to place the sensor. Therefore, the perceptions and the
NBYV are restricted to them. Formally, the discrete search space
is denoted by V; where V; ¢ V = R? x SO(3). To standardize
the process, we reuse the method proposed in [8], where a view
sphere around the object and a set of range images are obtained
for each view. To be precise, the object is placed in the center of
a global reference frame O. Then, a set of possible sensor poses,
Va4, is created by rotating a polar coordinate’s point. The magni-
tude of the polar coordinate’s vector is fixed and it provides the
distance from the object’s center to the sensor position. Next,
the sensor poses are obtained by uniformly moving the angles.
In our experiments, we use the same discretization provided by
[8] (1312 positions). Each view is pointed to the center of the
object. Figure 2 shows the reference frames and an example of
a sensor pose.

Once that the views are established, for each demo object we
generate the perception that correspond to each view in V,;. This
step is included for performance reasons because later during
training and validation it will be necessary to observe the ob-
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ject from the selected views. Hence, for each view a range im-
age (D) is acquired. Next, the range images are transformed to
point clouds, first with respect to the camera’s reference frame
and later with respect to the global reference frame. At the end
of this step, for each view and for each object, we have a point
cloud in terms of the global reference frame. From now on, we
will call to each point cloud in the global reference frame a per-
ception and we will write it as z. To remark that each perception
is generated from a view, we will write a it as z(v). The set of
possible perceptions will be written as Z;.

3.2. Ground Truth Next-Best-View

The NBV has been ideally defined as the view that increases
the amount of information about the object of interest [4], but in
practice, it is usually the view that optimizes a utility function.
Such a utility function indirectly measures the increment of in-
formation. For example, the functions that count the number
of unknown voxels [22] (voxels with probability 0.5) assume a
positive correlation between the hidden object’s surface and the
unknown voxels. The same reasoning applies for the informa-
tion gain approaches [10], where it is assumed that reducing the
entropy of the partial model will provide more scanned surface.
Those approaches are good to provide an approximation of the
goodness of the view. However, they do not provide the real
NBYV because for obvious reasons they do not know the object’s
shape. Therefore, in this section, we establish a methodology
for computing the NBV that will be taken as ground truth for
a given probabilistic grid. The methodology incorporates the
fact that the NBV must maximize the scanned surface but also
incorporates the overlap that is needed in real world’s recon-
structions.

First, let us state some concepts. The set of views where the
sensor has been placed is denoted by S = {sp,...,s,},S € V,.
The demo object is denoted by W,,; and it is a point cloud.
The object’s point cloud should be dense enough so that the
distance between points will be smaller than the voxel resolu-
tion. Also, let us denote the object’s accumulated point cloud as
P,.,. Recalling, given that the reconstruction is an iterative in-
tegration of perceptions, P, is the result of integrating the sen-
sor perceptions until the iteration i, namely Pye, = ;o 2(51)-
The percentage of coverage of a point cloud A with respect
of the object ground truth W,,; is computed with the function
Coverage(A, W) [22].

Now, let us define the ground truth NBV (v*) as the view that
increases the accumulated point cloud, formally:

v" = arg max Coverage(z(v) U Pyeu, Wop) 2)

subject to the following constraints:
e v* must be collision free, namely, it must lie in a free space.

e The perception z(v*) must have an overlap with P, higher
than a threshold, overlap(z(v*), Pycy) > thresh;.

e The common region between surfaces must have at least
three 3D features [15] (thresh, > 3) because besides of
the amount of overlap, 3D features are needed to complete
a 3D registration on the three axis.



In our experiments, we have set thresh; to 50% according
to the experimental research presented in [22]. To compute the
overlap, a radius, called gap, is defined to compare the two
point clouds, P, and z. Due to the amount of data contained
in these point clouds, a KdTree algorithm is needed to make
an efficient search over all the neighbors of P, in z within the
radius gap. NARF points [20] are used as 3D features.

3.3. Iterative Examples Generation

To generate the dataset we propose Algorithm 1. It recon-
structs a demo object several times using different initial sensor
poses and stores the computed NBVs. During the reconstruc-
tion, the current grid (M), accumulated point cloud (P,,) and
computed NBV (v*) are stored as an example. It is worth to
say that, even for the same object a different initial view will
produce a different partial model and a different sequence of
views.

The dataset generation requires as input a demo object
(Wop)), a correspondent point gap (gap < 0.005), a stop re-
construction criteria (S, ), @ maximum number of iterations
(max;,,;), an overlap percentage (thresh;), the set of views
(V4 = {v1...v,}) and the set of perceptions (Z = {z1,22 ... 2x})-
The object is assumed to be reconstructed when P, reaches a
percentage of coverage equal to S ., or the amount of iterations
has reached max,,, line 6 of Algorithm 1. Each reconstruc-
tion starts from a different initial view v; (line 2) by taking each
v € V,. Each point cloud z perceived at the pose v+ is read and
added to the current P, (line 7); next, a filtering operation is
performed to P, in order to maintain a uniform density (line
8). Then, in line 9, the probabilistic grid is updated according to
the last perception z. From line 11 to 22, an exhaustive search
is done over all possible views looking for the view whose per-
ception, z, maximizes the increment, A, on the current P,,. To
avoid confusions with the current perception, z, we define 7’ as
a perception in evaluation (line 12). z’ must satisfy a minimum
overlap (line 13) and must have at least thresh, 3D features
computed as NARF points (line 14). Then, the NBYV, vx, is the
one that maximizes the increment and satisfies the constraints.
Finally the algorithm saves a three-tuple which contains P,
M and v (line 24).

4. NBYV Class Prediction using Deep Learning

Deep learning is a new branch of machine learning. It has
improved the classification results provided by the conventional
techniques in different domains. The key aspect of DL resides
in the self-extraction of features or variables learned by the
same learning system. Thereby, there is no need for a con-
siderable experience and a careful choice by a user to choose,
design and extract a set of features or representations where the
performance of the system depends mainly on them.

DL scheme can be represented by two parts between input data
and output data. Composed by the hidden layers or a deep net-
work structure, the first part carries out the features extraction.
The second one involves one or two layers which predict the
class label. Depending on the problem, the first part can be
accomplished by a supervised machine learning approach as
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Algorithm 1 Dataset Examples Generation. The algorithm out-
puts several next-best-views given a known object surface.

Require: W,,;, gap, S cov, MaxXier, threshy, threshy V; and Z.
1: fori—1:ndo
2 vk
3 iter < 0
4' P(lCll — 0
5:  Initialize(M)
6 while Coverage(Pacu, Wopj) < Scov and iter < maxis,
do

7 Pacu — Pacu ) Z(V*)

8: P,y < DownsizeFiltering(Pq,)

9: M « UpdateGrid(M, z(v+))

10: Apax < 0

11: for j— 1:ndo

12: 7' « Perception(v))

13: if overlap(z/, Py, gap) > thresh; then

14 if [NARF(Z’ N Pyey)| > thresh, then

15: A — Coverage(z’ U Py, Wop))
Coverage(Pucu, Wonj)

16: if A > A, then

17: VE

18: Apax < A

19: end if

20: end if

21: end if

22: end for

23: iter + +

24: SaveToDataset(P ., M, v)

25:  end while

26: end for

the convolutional neural networks (CNN), unsupervised one as
Auto-Encoders (AEs) or both as the convolutional AEs.

To face the NBV learning problem, we propose a classification
approach, where we consider a possible sensor pose as a class.
In the next sections, we will present the discretization proposed
to establish the classes and an original 3D convolutional neural
network (3D-CNN) architecture to predict the correct class.

4.1. Classification

In general, a sensor pose is defined in a continuous space.
However, to use a classification approach it is necessary to have
a discrete set of possible classes. In consequence, we group the
poses generating a reduced set. This imply that predictions of
the 3D-CNN will be a pose centered in a region representing
a group of poses. To create a discrete set of views a sphere
tessellation or other techniques can be applied. From now on,
we will call to each possible pose a class.

4.2. Architecture

A 3D convolutional neural network (3D-CNN) is a special
case of a CNN. In this kind of architecture, the kernels are 3D
volumes instead of 2D maps. In the literature, there are sev-
eral 3D-CNN architectures for 3D representations, for example
VoxNet [16] and ShapeNets [23] are applied to volumes recog-
nition. To the best of our knowledge no 3D-CNN has been
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Fig. 3. Ten object examples contained in the dataset generated for experimentation. Inputs are P,., and M and the corresponding output is the NBV. The
black arrows show the NBV in the space. Blue voxels represent occupied space and yellow voxels unknown space.
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Fig. 4. NBV-Net architecture. A volume of size 32 x 32 x 32 is fed to the
network and 14 possible classes are given as output.

applied to the NBV prediction. Consequently, we propose an
architecture for NBV class prediction based on the problem’s
nature.

Henceforth, to simplify the notation, the next shorthand de-
scription is used:

e C(fk,s): 3D convolution layer with f features, a kernel of
size k X k X k with stride s X s X s.

e P(s): A max pooling operation of stride s X s X s.
e FC(n): Fully connected layer with n parameters as output.

The proposed architecture, called NBV-Net, is connected as fol-
lows: C(10,3,2) — P(2) — C(12,3,2) - P(2) — C(8,3,2) - P(2) —
FC(1500) — FC(500) — FC(100) — FC(50) — FC(C), where C in-
dicates the number of classes. After each layer, except polling,
the ReLu activation function is used. A softmax function with
cross entropy is applied to provide one-hot enconding. Fig. 4
illustrates the network.

5. Experiments and Results

5.1. Dataset Analysis

The dataset generated for experimentation contains
15,364 examples that were generated using algorithm 1;
available at  https://github.com/irvingvasquez/
nbv-regression-dataset. Each example is a tuple of the
probabilistic grid and its corresponding NBV. See Fig. 3. The
probabilistic grid has 32 x 32 x 32 voxels and contains the
whole object. The NBV designated for each grid is one of
the set V. For this dataset, we create 20 sensor poses around
the object, however only C = 14 were useful because the
remaining 6 are below the floor and do not provide information

—— NBV-Net
— VoxNet
— FC

Testing accuracy

T 7 T T T T
0 100 200 300 400 500
Epochs

Fig. 5. Testing accuracy for VoxNet, NBV-Net and a FC Network.

about the object [8]. Processing time for generating the
complete dataset was about 200 hours. An Intel® Core™
17-2600 CPU to 3.40GHz with 8GR RAM was employed. The
examples were created using 12 demo objects. Each object was
reconstructed from 263 initial views; the views were selected
to be uniformly distributed around the view sphere. We did
not use the whole V,; set as initial views because we consider
that very small differences between initial poses do not provide
substantial information. The stop coverage criterion, S .y,
was set to 80%, this allows a reasonable trade-off between
coverage and number of iterations. The maximum number of
scans, maxi.r, was set to 10. Distance for correspondent point
gap was set to 0.005m. During the reconstructions, the stop
criterion (coverage or a maximum number of iterations) was
reached at a different number of iterations due to the different
object shapes and initial view. The objects were reconstructed
from 3 to a maximum of 9 iterations and most of them are
between 3 and 5 iterations. The dataset restricted to 14 classes
is available at https://www.kaggle.com/irvingvasquez/
nbv-classification

5.2. Training

NBV-Net was trained using the dataset described in section
5.1. In addition, two supplementary networks were imple-
mented and trained in order to compare the accuracy of NBV-
Net. One of them is a simply fully connected (FC) network
of four layers; its architecture is FC(1500)-FC(750)-FC(100)-
FC(50). We have included the fully connected network as a
baseline. The second one is VoxNet [16], even though VoxNet
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has been designed for object recognition we want to test its per-
formance since its design is similar to the proposed NBV-Net.

Networks training was performed by Adam stochastic opti-
mization method [11]. The learning rate was 0.001 with a batch
size of 200. Dropout, of 0.7, is added after the FC layers and the
last convolutional layer. Convolutional layers were initialized
with values from a truncated normal distribution with o = 0.1
and ¢ = 0. Our implementation was made in Tensorflow. The
training was done using a GPU NVIDIA GeForce GTX1080
mounted on a desktop computer with 16GB of memory and a
Xeon E5-2620 v4 2.10GHz processor. Traning for NBV-Net,
FC and VoxNet was done using the same hyper-parameters.
Training epochs was set to 500. The dataset was splitted in
80% for training and 20% for testing. The training was stopped
in 500 epochs, based in the learning of the test set; from this
epoch, the test accuracy was oscillating in a margin of +0.02.
Processing time for training was 1.2 hours for VoxNet and 1.5
hours for NBV-Net. Fig. 5 plots the testing accuracy reached
by each network. It can be seen that testing accuracy for NBV-
Net is better than VoxNet and FC network. Even though testing
accuracy does not approximate to one, the use of the trained
NBV-Net in the reconstruction of several unknown objects is
satisfactory as the following experiment shows. Since the FC
network has shown a poor validation accuracy it will not be
tested in the following experiments.

5.3. 3D Reconstruction using Predicted NBV

In this experiment, we test the trained NBV-Net and VoxNet
networks in a 3D reconstruction task. The objective is to vali-
date that NBV-Net is capable of computing a sensor pose that
increases the object’s surface. The experiment’s workflow is to
place the sensor at a random initial pose, then to take a per-
ception, next, the probabilistic grid is updated, then the grid is
fed to each trained network and a forward pass is performed, at
this moment each network provides a class (the NBV), next, the
sensor is placed in the given class and a new perception is taken.
The process is repeated until the coverage is not increasing or
the network is providing an already visited sensor pose.

The reconstructions were conducted for three new objects:
a telephone, an iron, and a bottle. It is important to remark
that such objects were not seen by the networks during train-
ing. Each object was reconstructed 10 times by each network.
The same random initial poses were used for both networks.

Initial Iter 1 Iter 2 Iter 3 iter 4
87.1% | 92.6% 94.5% 94.6%
ad s s
72.4% | 77.1% 77.7% 80.6%
77.6% | 80.6%

Fig. 7. Reconstruction progress for three objects using NBV-Net. From top
to bottom: bottle, iron and telephone. Each frame shows the current state
of the probabilistic grid. Blue voxels represent occupied space and yellow
voxels unknown space.

Table 1. The average coverage (S), standard deviation (o), and iterations
(I) are shown as result of 10 reconstructions from random initial poses.

Object NBV-Net VoxNet

Scov T I S cov (% I
Bottle 93.18 | 344 | 4.1 | 83.88 | 11.05 | 2.2
Iron 80.77 | 141 | 45 | 77.64 | 1.8 2.6
Telephone | 84.07 | 3.12 | 3.5 | 79.52 | 5.65 1.8

The results are summarized in figure 6. The mean and stan-
dard deviations of the covered surface are shown in Table 1.
In https://youtu.be/ywlL4HgDaPI a video of three recon-
structions using NBV-Net is shown.

As a result, NBV-Net reaches a higher coverage in compar-
ison with the other networks. The overlap constraint (Section
3.2) is more evident in NBV-Net because the increments in per-
centage of covered surface are softer than VoxNet. In Fig. 7,
the three objects were reconstructed, starting from three random
poses and the iterations of the NBV predicted using NBV-Net
are shown.
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(d) Helmet (e) Dragon

Fig. 8. Objects used for comparing NBV-Net versus current state-of-the-art approaches.

Fig. 9. Comparison of reconstructed grids. The pictures were selected in order to remark the missing parts for each model. Top: NBV-Net. Bottom:
Information Gain. In both cases there are missing parts. The major difference is shown for the dragon model.

5.4. Comparison against non-machine-learning approaches

In this experiment, we compare the trained NBV-Net against
several non-machine-learning approaches in the reconstruction
of several unknown objects. The objective is to show the advan-
tages and disadvantages of the proposed data-driven approach
against the state-of-the-art methods in a more realistic scenario,
where an unknown object placed over a table is reconstructed
by a freeflyer Kinect sensor. The objects were not previously
used neither for training nor validation nor testing. The com-
pared methods are: Information gain (Inf. Gain) [12], unknown
voxels counting (Unk. Vox.) [22] and rear side voxels (R.S.V)
[5]. All methods require a set of candidate views in order to
evaluate them according to their own metric. To make the com-
parison fair, we use 20 candidate views around the objects for
all methods including NBV-Net. The tested objects are five (See
Fig. 8): sphere [21], bunny [21], dragon [21], teapot [19] and
helmet [19]. The experiment was carried out as follows: an ini-
tial scan from a fixed initial view is made, then each method
computes the NBV and updates the model iteratively until 10
scans. The mean processing times are presented in Table 2 and
the coverage reached is presented in Table 3. All methods were
tested in a 3.60GHz Intel Core i7 machine with 8 GB of RAM;
the GPU was disabled for NBV-Net and the forwards pass was
made only on the CPU.

Table 2. Next-best-view computation times. Units are seconds.

NBV-Net | Inf. Gain | Unk. Vox. | R.S.V
0.01s 299 s 17.5s 18.0s

Time

Table 3. Comparison of NBV-Net versus non-machine-learning ap-
proaches. Coverage and number of scans for reaching such coverage are
presented. After the given number of scans the surface did not increase.

NBV-Net | Inf. Gain | Unk. Vox. RSV
Sphere | 96.7/9 96.2 /7 97.0/6 97.0/8
Teapot | 91.9/5 93.2/17 93.7/6 93.4/8
Bunny 90.0/3 98.1/9 97.4/9 98.2/9
Helmet | 82.7/3 86.5/8 86.4 /10 85.7/9
Dragon | 71.3/8 | 90.4/10 84.7/9 87.2/10

Based on the results, we observed that NBV-Net is very effec-
tive and efficient in early iterations, reaching a competitive cov-
erage in a very short time, however it struggles in the last itera-
tions. As we can see in Table 2, the processing time required by
NBV-net is very short with respect to state-of-the-art methods;
1750 times faster than the second method (Unk. Vox.), this fact
is explained because the current methods explicitly model the
sensor and during the candidate evaluation, therefore they apply



Table 4. Comparison of NBV-Net versus non-machine-learning approaches
after four scans. Coverage reached by each method is presented.

NBV-Net | Inf. Gain | Unk. Vox. | R.S.V
Sphere 93.4 92.2 90.9 87.2
Teapot 87.1 93.0 91.9 84.4
Bunny 90.0 96.3 94.0 943
Helmet 82.7 85.1 86.0 85.0
Dragon 71.3 85.0 82.8 58.0

an expensive ray tracing. With respect to the coverage, in Table
3, we can see that NBV-Net reaches a competitive coverage for
the sphere, teapot, bunny and helmet but stalls in the dragon,
we believe that the stall is caused by two reasons: i) the dataset
does not contain a similar shape and ii) NBV-Net omits the sen-
sor modeling of previous approaches. On the other hand, NB V-
net reaches a high coverage with only a few scans. To show
this fact, Tab. 4 presents the coverage until four scans, where
we can observe that NBV-net wins for the sphere object and
is very close to the Information Gain approach for the remain-
ing objects, in addition, NBV-Net overcomes in three times the
R.S.V. method which reaches the lowest coverage. As we men-
tion earlier, NBV-net struggles in the last iterations where small
missing surfaces need to be observed (See Fig. 9). We believe
that such disadvantage is caused by the dataset where there is
a small number of examples where the object is almost recon-
structed. Recalling, the reconstructions made for the dataset
were stopped when 80% of the surface is reached.

In conclusion, NBV-Net reaches a high coverage in early it-
erations using a very short processing time. Therefore, we rec-
ommend the use of NBV-Net during the initial scans and then
to apply another method for the last iterations.

6. Conclusions

A scheme for computing the NBV for 3D object reconstruc-
tion based on supervised deep learning has been proposed. As
part of the scheme, we have presented an algorithm for auto-
matic generation of datasets and an original 3D convolutional
neural network called NBV-Net. We have trained the network
and we have compared its accuracy against an alternative net.
We also have tested NBV-Net in the reconstruction of several
unknown objects which were not seen during training. As a
result, NBV-Net was capable of predicting the NBV covering
the majority of the surface. In addition, the processing time for
computing the NBV is significantly shorter than state-of-the-art
methods given that it does not require the expensive ray tracing.
In consequence, we have shown positive evidence that the NBV
problem can be addressed as a classification problem when su-
pervised deep learning is applied. Our future research interest
is to face the NBV learning problem as a regression problem
avoiding the restriction of a limited set of classes.
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