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cInstituto Nacional de Astrofı́sica Óptica y Electrónica, Puebla, México.
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ABSTRACT

Motivated by the advances in 3D sensing technology and the spreading of low-cost robotic platforms,

3D object reconstruction has become a common task in many areas. Nevertheless, the selection of

the optimal sensor pose that maximizes the reconstructed surface is a problem that remains open. It

is known in the literature as the next-best-view planning problem. In this paper, we propose a novel

next-best-view planning scheme based on supervised deep learning. The scheme contains an algorithm

for automatic generation of datasets and an original three-dimensional convolutional neural network

(3D-CNN) used to learn the next-best-view. Unlike previous work where the problem is addressed as a

search, the trained 3D-CNN directly predicts the sensor pose. We present an experimental comparison

of the proposed architecture against two alternative networks; we also compare it with state-of-the-art

next-best-view methods in the reconstruction of several unknown objects. Our method is faster and

reaches high coverage.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous three-dimensional (3D) object reconstruction

or inspection is a computer vision task with applications to

many areas, for example, robotics or cultural heritage conser-

vation. It consists of generating a 3D model from a physi-

cal object by sensing its surface from several points of views.

When the object is unknown, the task is performed iteratively

in four steps: sensor positioning, sensing, registration and plan-

ning of the next sensor location [18]. In this work, we are in-

terested in the challenging step of planning. According to the

literature, the addressed challenge is called the next-best-view

(NBV) problem and it has been defined as the task of computing

the sensor position and orientation that maximizes the object’s

surface [4].

So far, most of the state-of-the-art techniques for NBV plan-

ning have been manually designed depending on the represen-

tations, needs, and constraints of reconstruction scene. Some

methods, called synthesis methods, rely on analyzing the cur-

rent information about the surface and directly synthesize the
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NBV [3], [17]. Synthesis methods are fast but their perfor-

mance is usually decreased by objects with self-occlusions [18].

Another type of methods, called search-based, define a utility

function and then perform a search over the feasible sensor po-

sitions in order to optimize the utility function. For instance,

[24] and [2] represent the information with a probabilistic uni-

form grid, and they define as relevant features the frontier cells,

as a result, they perform a search of the sensor position and ori-

entation from where the maximum number of frontier cells is

observed. Recent utility functions are based on the information

gain contained in the model, [10]. In such cases, the target is

to find the sensor pose that observes the cells (voxels) whose

entropy is higher. Search-based methods are time-consuming

given that the utility function has to be evaluated multiple times.

Therefore, there is still a need for methods with the following

characteristics: i) effective in spite of the object’s shape and ii)

efficient in terms of computation time.

On the other hand, leveraged by technological advances in

parallel processing hardware, the machine learning technique

called deep learning (DL) [14] has dramatically improved the

state-of-the-art in several areas, such as optical character recog-

nition, two or three dimensional object recognition and classi-

fication [13]. One of the main advantages of DL is to automat-
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Fig. 2. Coordinate frames. An i measured point with respect to the cam-

era’s frame is denoted by PC
i
= (xc

, yc
, zc), the same point referenced to the

global reference frame is denoted PO
i
= (x, y, z).

crete search space. Making use of human expertise to label the

dataset has been discarded since there are inherent constraints

that even for a human expert are not easy to estimate, one of

them is the registration constraint which is needed to build a

unified model.

The proposed methodology works as follows. Given a demo

object (an object from which we known the whole surface), 1)

we establish a discrete NBV search space and then 2) we iter-

atively reconstruct it while we generate the NBVs. Below we

describe the discrete search space, then we provide the defini-

tion and computation of a ground truth NBV and finally, we

provide the iterative process for building the dataset.

3.1. Search Space Generation

In this step, for all demo objects a discrete set of views

(search space) is build. Such views will be the only available

poses to place the sensor. Therefore, the perceptions and the

NBV are restricted to them. Formally, the discrete search space

is denoted by Vd where Vd ⊂ V = R
3 × S O(3). To standardize

the process, we reuse the method proposed in [8], where a view

sphere around the object and a set of range images are obtained

for each view. To be precise, the object is placed in the center of

a global reference frame O. Then, a set of possible sensor poses,

Vd, is created by rotating a polar coordinate’s point. The magni-

tude of the polar coordinate’s vector is fixed and it provides the

distance from the object’s center to the sensor position. Next,

the sensor poses are obtained by uniformly moving the angles.

In our experiments, we use the same discretization provided by

[8] (1312 positions). Each view is pointed to the center of the

object. Figure 2 shows the reference frames and an example of

a sensor pose.

Once that the views are established, for each demo object we

generate the perception that correspond to each view in Vd. This

step is included for performance reasons because later during

training and validation it will be necessary to observe the ob-

ject from the selected views. Hence, for each view a range im-

age (D) is acquired. Next, the range images are transformed to

point clouds, first with respect to the camera’s reference frame

and later with respect to the global reference frame. At the end

of this step, for each view and for each object, we have a point

cloud in terms of the global reference frame. From now on, we

will call to each point cloud in the global reference frame a per-

ception and we will write it as z. To remark that each perception

is generated from a view, we will write a it as z(v). The set of

possible perceptions will be written as Zd.

3.2. Ground Truth Next-Best-View

The NBV has been ideally defined as the view that increases

the amount of information about the object of interest [4], but in

practice, it is usually the view that optimizes a utility function.

Such a utility function indirectly measures the increment of in-

formation. For example, the functions that count the number

of unknown voxels [22] (voxels with probability 0.5) assume a

positive correlation between the hidden object’s surface and the

unknown voxels. The same reasoning applies for the informa-

tion gain approaches [10], where it is assumed that reducing the

entropy of the partial model will provide more scanned surface.

Those approaches are good to provide an approximation of the

goodness of the view. However, they do not provide the real

NBV because for obvious reasons they do not know the object’s

shape. Therefore, in this section, we establish a methodology

for computing the NBV that will be taken as ground truth for

a given probabilistic grid. The methodology incorporates the

fact that the NBV must maximize the scanned surface but also

incorporates the overlap that is needed in real world’s recon-

structions.

First, let us state some concepts. The set of views where the

sensor has been placed is denoted by S = {s0, . . . , sn}, S ⊆ Vd.

The demo object is denoted by Wob j and it is a point cloud.

The object’s point cloud should be dense enough so that the

distance between points will be smaller than the voxel resolu-

tion. Also, let us denote the object’s accumulated point cloud as

Pacu. Recalling, given that the reconstruction is an iterative in-

tegration of perceptions, Pacu is the result of integrating the sen-

sor perceptions until the iteration i, namely Pacu =
⋃

i=0,n z(si).

The percentage of coverage of a point cloud A with respect

of the object ground truth Wob j is computed with the function

Coverage(A,Wob j) [22].

Now, let us define the ground truth NBV (v∗) as the view that

increases the accumulated point cloud, formally:

v∗ = arg max
v

Coverage(z(v) ∪ Pacu,Wob j) (2)

subject to the following constraints:

• v∗ must be collision free, namely, it must lie in a free space.

• The perception z(v∗) must have an overlap with Pacu higher

than a threshold, overlap(z(v∗), Pacu) > thresh1.

• The common region between surfaces must have at least

three 3D features [15] (thresh2 ≥ 3) because besides of

the amount of overlap, 3D features are needed to complete

a 3D registration on the three axis.
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In our experiments, we have set thresh1 to 50% according

to the experimental research presented in [22]. To compute the

overlap, a radius, called gap, is defined to compare the two

point clouds, Pacu and z. Due to the amount of data contained

in these point clouds, a KdTree algorithm is needed to make

an efficient search over all the neighbors of Pacu in z within the

radius gap. NARF points [20] are used as 3D features.

3.3. Iterative Examples Generation

To generate the dataset we propose Algorithm 1. It recon-

structs a demo object several times using different initial sensor

poses and stores the computed NBVs. During the reconstruc-

tion, the current grid (M), accumulated point cloud (Pacu) and

computed NBV (v∗) are stored as an example. It is worth to

say that, even for the same object a different initial view will

produce a different partial model and a different sequence of

views.

The dataset generation requires as input a demo object

(Wob j), a correspondent point gap (gap ← 0.005), a stop re-

construction criteria (S cov), a maximum number of iterations

(maxiter), an overlap percentage (thresh1), the set of views

(Vd = {v1 . . . vn}) and the set of perceptions (Z = {z1, z2 . . . zn}).

The object is assumed to be reconstructed when Pacu reaches a

percentage of coverage equal to S cov or the amount of iterations

has reached maxiter, line 6 of Algorithm 1. Each reconstruc-

tion starts from a different initial view vi (line 2) by taking each

v ∈ Vd. Each point cloud z perceived at the pose v∗ is read and

added to the current Pacu (line 7); next, a filtering operation is

performed to Pacu in order to maintain a uniform density (line

8). Then, in line 9, the probabilistic grid is updated according to

the last perception z. From line 11 to 22, an exhaustive search

is done over all possible views looking for the view whose per-

ception, z, maximizes the increment, ∆, on the current Pacu. To

avoid confusions with the current perception, z, we define z′ as

a perception in evaluation (line 12). z′ must satisfy a minimum

overlap (line 13) and must have at least thresh2 3D features

computed as NARF points (line 14). Then, the NBV, v∗, is the

one that maximizes the increment and satisfies the constraints.

Finally the algorithm saves a three-tuple which contains Pacu,

M and v∗ (line 24).

4. NBV Class Prediction using Deep Learning

Deep learning is a new branch of machine learning. It has

improved the classification results provided by the conventional

techniques in different domains. The key aspect of DL resides

in the self-extraction of features or variables learned by the

same learning system. Thereby, there is no need for a con-

siderable experience and a careful choice by a user to choose,

design and extract a set of features or representations where the

performance of the system depends mainly on them.

DL scheme can be represented by two parts between input data

and output data. Composed by the hidden layers or a deep net-

work structure, the first part carries out the features extraction.

The second one involves one or two layers which predict the

class label. Depending on the problem, the first part can be

accomplished by a supervised machine learning approach as

Algorithm 1 Dataset Examples Generation. The algorithm out-

puts several next-best-views given a known object surface.

Require: Wob j, gap, S cov, maxiter, thresh1, thresh2 Vd and Zd.

1: for i← 1 : n do

2: v∗ ← vi

3: iter ← 0

4: Pacu ← ∅

5: Initialize(M)

6: while Coverage(Pacu,Wob j) < S cov and iter < maxiter

do

7: Pacu ← Pacu ∪ z(v∗)

8: Pacu ← DownsizeFiltering(Pacu)

9: M ← UpdateGrid(M, z(v∗))

10: ∆max ← 0

11: for j← 1 : n do

12: z′ ← Perception(v j)

13: if overlap(z′, Pacu, gap) > thresh1 then

14: if |NARF(z′ ∩ Pacu)| > thresh2 then

15: ∆ ← Coverage(z′ ∪ Pacu,Wob j) −

Coverage(Pacu,Wob j)

16: if ∆ > ∆max then

17: v∗ ← v j

18: ∆max ← ∆

19: end if

20: end if

21: end if

22: end for

23: iter + +

24: SaveToDataset(Pacu,M, v∗)

25: end while

26: end for

the convolutional neural networks (CNN), unsupervised one as

Auto-Encoders (AEs) or both as the convolutional AEs.

To face the NBV learning problem, we propose a classification

approach, where we consider a possible sensor pose as a class.

In the next sections, we will present the discretization proposed

to establish the classes and an original 3D convolutional neural

network (3D-CNN) architecture to predict the correct class.

4.1. Classification

In general, a sensor pose is defined in a continuous space.

However, to use a classification approach it is necessary to have

a discrete set of possible classes. In consequence, we group the

poses generating a reduced set. This imply that predictions of

the 3D-CNN will be a pose centered in a region representing

a group of poses. To create a discrete set of views a sphere

tessellation or other techniques can be applied. From now on,

we will call to each possible pose a class.

4.2. Architecture

A 3D convolutional neural network (3D-CNN) is a special

case of a CNN. In this kind of architecture, the kernels are 3D

volumes instead of 2D maps. In the literature, there are sev-

eral 3D-CNN architectures for 3D representations, for example

VoxNet [16] and ShapeNets [23] are applied to volumes recog-

nition. To the best of our knowledge no 3D-CNN has been
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(a) Sphere (b) Teapot (c) Bunny (d) Helmet (e) Dragon

Fig. 8. Objects used for comparing NBV-Net versus current state-of-the-art approaches.

Fig. 9. Comparison of reconstructed grids. The pictures were selected in order to remark the missing parts for each model. Top: NBV-Net. Bottom:

Information Gain. In both cases there are missing parts. The major difference is shown for the dragon model.

5.4. Comparison against non-machine-learning approaches

In this experiment, we compare the trained NBV-Net against

several non-machine-learning approaches in the reconstruction

of several unknown objects. The objective is to show the advan-

tages and disadvantages of the proposed data-driven approach

against the state-of-the-art methods in a more realistic scenario,

where an unknown object placed over a table is reconstructed

by a freeflyer Kinect sensor. The objects were not previously

used neither for training nor validation nor testing. The com-

pared methods are: Information gain (Inf. Gain) [12], unknown

voxels counting (Unk. Vox.) [22] and rear side voxels (R.S.V)

[5]. All methods require a set of candidate views in order to

evaluate them according to their own metric. To make the com-

parison fair, we use 20 candidate views around the objects for

all methods including NBV-Net. The tested objects are five (See

Fig. 8): sphere [21], bunny [21], dragon [21], teapot [19] and

helmet [19]. The experiment was carried out as follows: an ini-

tial scan from a fixed initial view is made, then each method

computes the NBV and updates the model iteratively until 10

scans. The mean processing times are presented in Table 2 and

the coverage reached is presented in Table 3. All methods were

tested in a 3.60GHz Intel Core i7 machine with 8 GB of RAM;

the GPU was disabled for NBV-Net and the forwards pass was

made only on the CPU.

Table 2. Next-best-view computation times. Units are seconds.

NBV-Net Inf. Gain Unk. Vox. R.S.V

Time 0.01 s 29.9 s 17.5 s 18.0 s

Table 3. Comparison of NBV-Net versus non-machine-learning ap-

proaches. Coverage and number of scans for reaching such coverage are

presented. After the given number of scans the surface did not increase.

NBV-Net Inf. Gain Unk. Vox. R.S.V

Sphere 96.7 / 9 96.2 / 7 97.0 / 6 97.0 / 8

Teapot 91.9 / 5 93.2 / 7 93.7 / 6 93.4 / 8

Bunny 90.0 / 3 98.1 / 9 97.4 / 9 98.2 / 9

Helmet 82.7 / 3 86.5 / 8 86.4 /10 85.7 / 9

Dragon 71.3 / 8 90.4 / 10 84.7 / 9 87.2 / 10

Based on the results, we observed that NBV-Net is very effec-

tive and efficient in early iterations, reaching a competitive cov-

erage in a very short time, however it struggles in the last itera-

tions. As we can see in Table 2, the processing time required by

NBV-net is very short with respect to state-of-the-art methods;

1750 times faster than the second method (Unk. Vox.), this fact

is explained because the current methods explicitly model the

sensor and during the candidate evaluation, therefore they apply



8

Table 4. Comparison of NBV-Net versus non-machine-learning approaches

after four scans. Coverage reached by each method is presented.

NBV-Net Inf. Gain Unk. Vox. R.S.V

Sphere 93.4 92.2 90.9 87.2

Teapot 87.1 93.0 91.9 84.4

Bunny 90.0 96.3 94.0 94.3

Helmet 82.7 85.1 86.0 85.0

Dragon 71.3 85.0 82.8 58.0

an expensive ray tracing. With respect to the coverage, in Table

3, we can see that NBV-Net reaches a competitive coverage for

the sphere, teapot, bunny and helmet but stalls in the dragon,

we believe that the stall is caused by two reasons: i) the dataset

does not contain a similar shape and ii) NBV-Net omits the sen-

sor modeling of previous approaches. On the other hand, NBV-

net reaches a high coverage with only a few scans. To show

this fact, Tab. 4 presents the coverage until four scans, where

we can observe that NBV-net wins for the sphere object and

is very close to the Information Gain approach for the remain-

ing objects, in addition, NBV-Net overcomes in three times the

R.S.V. method which reaches the lowest coverage. As we men-

tion earlier, NBV-net struggles in the last iterations where small

missing surfaces need to be observed (See Fig. 9). We believe

that such disadvantage is caused by the dataset where there is

a small number of examples where the object is almost recon-

structed. Recalling, the reconstructions made for the dataset

were stopped when 80% of the surface is reached.

In conclusion, NBV-Net reaches a high coverage in early it-

erations using a very short processing time. Therefore, we rec-

ommend the use of NBV-Net during the initial scans and then

to apply another method for the last iterations.

6. Conclusions

A scheme for computing the NBV for 3D object reconstruc-

tion based on supervised deep learning has been proposed. As

part of the scheme, we have presented an algorithm for auto-

matic generation of datasets and an original 3D convolutional

neural network called NBV-Net. We have trained the network

and we have compared its accuracy against an alternative net.

We also have tested NBV-Net in the reconstruction of several

unknown objects which were not seen during training. As a

result, NBV-Net was capable of predicting the NBV covering

the majority of the surface. In addition, the processing time for

computing the NBV is significantly shorter than state-of-the-art

methods given that it does not require the expensive ray tracing.

In consequence, we have shown positive evidence that the NBV

problem can be addressed as a classification problem when su-

pervised deep learning is applied. Our future research interest

is to face the NBV learning problem as a regression problem

avoiding the restriction of a limited set of classes.
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